142 research outputs found

    A Nested Attention Neural Hybrid Model for Grammatical Error Correction

    Full text link
    Grammatical error correction (GEC) systems strive to correct both global errors in word order and usage, and local errors in spelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC. Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information,and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective in correcting local errors that involve small edits in orthography

    Mutiple Hopf Bifurcation on Center Manifold

    Get PDF
    In this chapter, by researching the algorithm of the formal series, and deducing the recursion formula of computing the nondegenerate and degenerate singular point quantities on center manifold, we investigate the Hopf bifurcation of high‐dimensional nonlinear dynamic systems. And more as applications, the singular point quantities for two classes of typical three‐ or four‐dimensional polynomial systems are obtained, the corresponding multiple limit cycles or Hopf cyclicity restricted to the center manifold are discussed

    Isolated periodic wave trains in a generalized Burgers-Huxley equation

    Get PDF
    We study the isolated periodic wave trains in a class of modified generalized Burgers–Huxley equation. The planar systems with a degenerate equilibrium arising after the traveling transformation are investigated. By finding certain positive definite Lyapunov functions in the neighborhood of the degenerate singular points and the Hopf bifurcation points, the number of possible limit cycles in the corresponding planar systems is determined. The existence of isolated periodic wave trains in the equation is established, which is universal for any positive integer n in this model. Within the process, one interesting example is obtained, namely a series of limit cycles bifurcating from a semi-hyperbolic singular point with one zero eigenvalue and one non-zero eigenvalue for its Jacobi matrix

    Secure and Privacy-Preserving Data Sharing and Collaboration in Mobile Healthcare Social Networks of Smart Cities

    Get PDF
    Mobile healthcare social networks (MHSN) integrated with connected medical sensors and cloud-based health data storage provide preventive and curative health services in smart cities. The fusion of social data together with real-time health data facilitates a novel paradigm of healthcare big data analysis. However, the collaboration of healthcare and social network service providers may pose a series of security and privacy issues. In this paper, we propose a secure health and social data sharing and collaboration scheme in MHSN. To preserve the data privacy, we realize secure and fine-grained health data and social data sharing with attribute-based encryption and identity-based broadcast encryption techniques, respectively, which allows patients to share their private personal data securely. In order to achieve enhanced data collaboration, we allow the healthcare analyzers to access both the reencrypted health data and the social data with authorization from the data owner based on proxy reencryption. Specifically, most of the health data encryption and decryption computations are outsourced from resource-constrained mobile devices to a health cloud, and the decryption of the healthcare analyzer incurs a low cost. The security and performance analysis results show the security and efficiency of our scheme

    Subcellular localization of APMCF1 and its biological significance of expression pattern in normal and malignant human tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>APMCF1 is a novel human gene first cloned from apoptotic MCF-7 cells. Our previous study found ectogenic APMCF1 could induce G1 arrest in hepatocarcinoma cell line HHCC. In order to search its broad expression profile for further understanding of its mechanism in tumor, we investigated a subcellular location of APMCF1 and performed an immunohistochemistry study including various tumor and normal tissues. Discovery from the expression characterization of AMPCF1 may have applicability in the analysis of its biological function in tumor.</p> <p>Methods</p> <p>We investigated subcellular localization of APMCF1 by transient transfection in green monkey kidney epithelial cells (COS-7) with a fusion protein vector pEGFP-APMCF1 and detected expression profile in a broad range of normal and malignant human tissues via tissue microarray (TMA) by immunohistochemistry with polyclonal antibody first produced in our laboratory.</p> <p>Results</p> <p>EGFP-APMCF1 was generally localized in the cytoplasm of COS-7 cell. Positive staining of APMCF1 was found in liver, lung, breast, colon, stomach, esophagus and testis, exhibited a ubiquitous expression pattern while its expression was up-regulated in tumor tissues compared with corresponding normal tissues. Normal brain neuron cells also showed expression of APMCF1, but negative in gliocyte cells and glioma. Both the normal and tumor tissues of ovary were absent of APMCF1 expression. Positive immunostaining for APMCF1 with large samples in liver, colon, esophagus, lung and breast carcinomas were 96% (51/53), 80% (44/55), 57% (30/53), 58% (33/57) and 34% (16/47) respectively.</p> <p>Conclusion</p> <p>These results revealed a cytoplastic expression pattern of APMCF1 and up-regulated in tumour tissues suggesting APMCF1 may have potential relationship with oncogenesis. The data presented should serve as a useful reference for further studies of APMCF1 functions in tumorigenesis and might provide a potential anti-tumor target.</p

    Follow-up of patients with COVID-19 by the Delta variant after hospital discharge in Guangzhou, Guandong, China

    Get PDF
    The B.1.617.2 (Delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has contributed to a new increment in cases across the globe. We conducted a prospective follow-up of COVID-19 cases to explore the recurrence and potential propagation risk of the Delta variant and discuss potential explanations for the infection recurrence. A prospective, non-interventional follow-up of discharged patients who had SARS-CoV-2 infections by the Delta variant in Guangdong, China, from May 2021 to June 2021 was conducted. The subjects were asked to complete a physical health examination and undergo nucleic acid testing and antibody detection for the laboratory diagnosis of COVID-19. In total, 20.33% (25/123) of patients exhibited recurrent positive results after discharge. All patients with infection recurrence were asymptomatic and showed no abnormalities in the pulmonary computed tomography. The time from discharge to the recurrent positive testing was usually between 1-33 days, with a mean time of 9.36 days. The cycle threshold from the real-time polymerase chain reaction assay that detected the recurrence of positivity ranged from 27.48 to 39.00, with an average of 35.30. The proportion of vaccination in the non-recurrent group was higher than that in the recurrently positive group (26% vs. 4%; χ2 = 7.902; P &lt; 0.05). Two months after discharge, the most common symptom was hair loss and 59.6% of patients had no long-term symptoms at all. It is possible for the Delta variant SARS-CoV-2 patients after discharge to show recurrent positive results of nucleic acid detection; however, there is a low risk of continuous community transmission. Both, the physical and mental quality of life of discharged patients were significantly affected. Our results suggest that it makes sense to implement mass vaccination against the Delta variant of SARS-CoV-2

    Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Progressive loss of articular cartilage is a central hallmark in many joint disease, however, the relative importance of individual proteolytic pathways leading to cartilage erosion is at present unknown. We therefore investigated the time-dependant release <it>ex vivo </it>of MMP- and aggrecanase-derived fragments of aggrecan and type II collagen into the supernatant of bovine cartilage explants cultures using neo-epitope specific immunoassays, and to associate the release of these fragments with the activity of proteolytic enzymes using inhibitors.</p> <p>Findings</p> <p>Bovine cartilage explants were cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM) and tumor necrosis factor alpha (TNFα). In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo-epitope specific immunoassays; (1) sandwich <sup>342</sup>FFGVG-G2 ELISA, (2) competition NITEGE<sup>373</sup>ELISA (3) sandwich G1-NITEGE<sup>373 </sup>ELISA (4) competition <sup>374</sup>ARGSV ELISA, and (5) sandwich <sup>374</sup>ARGSV-G2 ELISA all detecting aggrecan fragments, and (6) sandwich CTX-II ELISA, detecting C-telopeptides of type II collagen. We found that (1) aggrecanase-derived aggrecan fragments are released in the early (day 2-7) and mid phase (day 9-14) into the supernatant from bovine explants cultures stimulated with catabolic cytokines, (2) the release of NITEGE<sup>373 </sup>neo-epitopes are delayed compared to the corresponding <sup>374</sup>ARGSV fragments, (3) the MMP inhibitor GM6001 did not reduce the release of aggrecanase-derived fragment, but induced a further delay in the release of these fragments, and finally (4) the MMP-derived aggrecan and type II collagen fragments were released in the late phase (day 16-21) only.</p> <p>Conclusion</p> <p>Our data support the model, that aggrecanases and MMPs act independently in the processing of the aggrecan molecules, and furthermore that suppression of MMP-activity had little if any effect on the quantity of aggrecanase-derived fragments released from explants cultures.</p

    Magnetic States of the Two-Leg Ladder Alkali Metal Iron Selenides AAFe2_2Se3_3

    Full text link
    Recent neutron scattering experiments addressing the magnetic state of the two-leg ladder selenide compound BaFe2_2Se3_3 have unveiled a dominant spin arrangement involving ferromagnetically ordered 2×\times2 iron-superblocks, that are antiferromagnetically coupled among them (the "block-AFM" state). Using the electronic five-orbital Hubbard model, first principles techniques to calculate the electronic hopping amplitudes between irons, and the real-space Hartree-Fock approximation to handle the many-body effects, here it is shown that the exotic block-AFM state is indeed stable at realistic electronic densities close to n∌6.0n \sim 6.0. Another state (the "CX" state) with parallel spins along the rungs and antiparallel along the legs of the ladders is close in energy. This state becomes stable in other portions of the phase diagrams, such as with hole doping, as also found experimentally via neutron scattering applied to KFe2_2Se3_3. In addition, the present study unveils other competing magnetic phases that could be experimentally stabilized varying either nn chemically or the electronic bandwidth by pressure. Similar results were obtained using two-orbital models, studied here via Lanczos and DMRG techniques. A comparison of the results obtained with the realistic selenides hoppings amplitudes for BaFe2_2Se3_3 against those found using the hopping amplitudes for pnictides reveals several qualitative similarities, particularly at intermediate and large Hubbard couplings.Comment: 10 pages, 6 figure
    • 

    corecore